Олимпиадные задачи из источника «34 турнир (2012/2013 год)» для 2-8 класса - сложность 4 с решениями

Петя и Вася играют в следующую игру. Петя загадывает натуральное число <i>x</i> с суммой цифр 2012. За один ход Вася выбирает любое натуральное число <i>a</i> и узнаёт у Пети сумму цифр числа  |<i>x – a</i>|.  Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить <i>x</i>?

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.

  а) Могут ли они гарантировать результат более 500?

  б) Могут ли они гарантировать результат не менее 999?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка