Олимпиадные задачи из источника «35 турнир (2013/2014 год)» - сложность 4 с решениями
35 турнир (2013/2014 год)
НазадНа плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)
Петя и Вася играют в такую игру. Сначала на столе лежит 11 кучек по 10 камней. Игроки ходят по очереди, начинает Петя. Каждым ходом игрок берёт 1, 2 или 3 камня, но Петя каждый раз выбирает все камни из любой одной кучки, а Вася всегда выбирает все камни из разных кучек (если их больше одного). Проигрывает тот, кто не может сделать ход. Кто из игроков может обеспечить себе победу, как бы ни играл его соперник?