Олимпиадные задачи из источника «весенний тур, базовый вариант, 8-9 класс» для 3-11 класса - сложность 2 с решениями

На какое наименьшее количество квадратов можно разрезать лесенку из 15 ступеней (см. рисунок)? Резать можно только по границам клеток. <div align="center"><img src="/storage/problem-media/65152/problem_65152_img_2.gif"></div>

Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?

На стороне <i>AB</i> треугольника <i>ABC</i> отметили точки <i>K</i> и <i>L</i> так, что  <i>KL = BC</i>  и  <i>AK = LB</i>.

Докажите, что отрезок <i>KL</i> виден из середины <i>M</i> стороны <i>AC</i> под прямым углом.

Можно ли раскрасить грани куба в три цвета так, чтобы каждый цвет присутствовал, но нельзя было увидеть одновременно грани всех трёх цветов, откуда бы мы ни взглянули на куб? (Одновременно можно увидеть только три любые грани, имеющие общую вершину.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка