Олимпиадные задачи из источника «устный тур» для 2-9 класса - сложность 2-5 с решениями
устный тур
НазадДан бесконечный запас белых, синих и красных кубиков. По кругу расставляют любые $N$ из них. Робот, став в любое место круга, идёт по часовой стрелке и, пока не останется один кубик, постоянно повторяет такую операцию: уничтожает два ближайших кубика перед собой и ставит позади себя новый кубик того же цвета, если уничтоженные одинаковы, и третьего цвета, если уничтоженные двух разных цветов. Назовём расстановку кубиков <i>хорошей</i>, если цвет оставшегося в конце кубика не зависит от места, с которого стартовал робот. Назовём $N$ <i>удачным</i>, если при любом выборе $N$ кубиков все их расстановки хорошие. Найдите все удачные $N$.
<i>Первая производная</i> бесконечной последовательности $a_1, a_2$, ... – это последовательность $a'n = a{n+1} - a_n$ (где $n$ = 1, 2, ...), а её <i>k-я производная</i> – это первая производная её ($k$–1)-й производной
($k$ = 2, 3, ...). Назовём последовательность <i>хорошей</i>, если она и все её производные состоят из положительных чисел. Докажите, что если $a_1, a_2$, ... и $b_1, b_2$, ... – хорошие последовательности, то и $a_1b_1, a_2b_2$, ... – хорошая последовательность.
На клетчатой плоскости отметили 40 клеток. Всегда ли найдётся клетчатый прямоугольник, содержащий ровно 20 отмеченных клеток?
На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что $AA_1 = BB_1 = CC_1 = R$, где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.
В строку записано 2020 натуральных чисел. Каждое из них, начиная с третьего, делится и на предыдущее, и на сумму двух предыдущих.
Какое наименьшее значение может принимать последнее число в строке?