Олимпиадные задачи из источника «весенний тур, сложный вариант, 8-9 класс» для 4-7 класса
весенний тур, сложный вариант, 8-9 класс
НазадВ центре каждой клетки клетчатого прямоугольника $M$ расположена точечная лампочка, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек, и зажечь все лампочки по какую-то одну сторону от этой прямой, если все они погашены. Каждым ходом должна зажигаться хотя бы одна лампочка. Требуется зажечь все лампочки, сделав как можно больше ходов. Какое максимальное число ходов удастся сделать, если
а) $M$ – квадрат $21\times21$;
б) $M$ – прямоугольник $20\times21$?
Путешественник прибыл на остров, где живут 50 аборигенов, каждый из которых либо рыцарь, либо лжец. Все аборигены встали в круг, и каждый назвал сначала возраст своего соседа слева, а потом возраст соседа справа. Известно, что каждый рыцарь назвал оба числа верно, а каждый лжец какой-то из возрастов (по своему выбору) увеличил на 1, а другой – уменьшил на 1. Всегда ли путешественник по высказываниям аборигенов сможет определить, кто из них рыцарь, а кто лжец?
Треугольник $ABC$ равносторонний. На сторонах $AB$ и $AC$ выбрали точки $E$ и $F$, а на продолжении стороны $AB$ – точку $K$ так, что $AE=CF=BK$. Точка $P$ – середина $EF$. Докажите, что угол $KPC$ прямой.
Число $2021 = 43\cdot47$ составное. Докажите, что если вписать в числе $2021$ сколько угодно восьмёрок между $20$ и $21$, тоже получится составное число.