Олимпиадные задачи из источника «45 турнир (2023/2024 год)» для 9 класса - сложность 3-4 с решениями
45 турнир (2023/2024 год)
НазадУ Вани есть клетчатая бумага двух видов: белая и чёрная. Он вырезает кусок из любой бумаги и наклеивает на серую клетчатую доску $45\times 45$, делая так много раз. Какое минимальное число кусков нужно наклеить, чтобы «раскрасить» клетки доски в шахматном порядке? (Каждый кусок – набор клеток, в котором от любой клетки до любой другой можно пройти, переходя из клетки в соседнюю через их общую сторону. Можно наклеивать куски один поверх другого. Все клетки имеют размер $1\times 1$.)
Можно ли на плоскости из каждой точки с рациональными координатами выпустить луч так, чтобы никакие два луча не имели общей точки и при этом среди прямых, содержащих эти лучи, никакие две не были бы параллельны?
В каждой клетке таблицы $N\times N$ записано число. Назовём клетку<i>хорошей</i>, если сумма чисел строки, содержащей эту клетку, не меньше, чем сумма чисел столбца, содержащего эту клетку. Найдите наименьшее возможное количество хороших клеток.
Точки $P$, $Q$ лежат внутри окружности $\omega$. Серединный перпендикуляр к отрезку $PQ$ пересекает $\omega$ в точках $A$ и $D$. Окружность с центром $D$, проходящая через $P$ и $Q$, пересекает $\omega$ в точках $B$ и $C$. Отрезок $PQ$ лежит внутри треугольника $ABC$. Докажите, что $\angle ACP = \angle BCQ$.
Дано натуральное число $n$. Можно ли представить многочлен $x(x-1)\dots(x-n)$ в виде суммы двух кубов многочленов с действительными коэффициентами?
Назовём<i>полоской</i>клетчатый многоугольник, который можно пройти целиком, начав из какой-то его клетки и далее двигаясь только в двух направлениях — вверх или вправо. Несколько таких одинаковых полосок можно вставить друг в друга, сдвигая на вектор (–1, 1). Докажите, что для любой полоски, состоящей из чётного числа клеток, найдётся такое нечётное $k$, что если объединить $k$ таких же полосок, вставив их последовательно друг в друга, то полученный многоугольник можно будет разделить по линиям сетки на две равные части. (На рисунке приведён пример.)<img width="200" src="/storage/problem-media/67435/problem_67435_img_2.png">
Дан многочлен степени $n$ > 0 с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что у этого многочлена не может быть никаких других коэффициентов, кроме 1, –1 и –2.
Даны две равные окружности $\omega_1$ и $\omega_2$ с центрами $O_1$ и $O_2$. На отрезке $O_1O_2$ взяты точки $X$ и $Y$ так, что $O_1Y = O_2X$. Точки $A$ и $B$ лежат на $\omega_1$, и прямая $AB$ проходит через $X$. Точки $C$ и $D$ лежат на $\omega_2$, и прямая $CD$ проходит через $Y$. Докажите, что существует окружность, касающаяся прямых $AO_1$, $BO_1$, $CO_2$ и $DO_2$.<img width="600" src="/storage/problem-media/67433/problem_67433_img_2.png">
В каждой клетке таблицы $N\times N$ записано число. Назовём клетку $C$<i>хорошей</i>, если в какой-то из клеток, соседних с $C$ по стороне, стоит число на 1 больше, чем в $C$, а в какой-то другой из клеток, соседних с $C$ по стороне, стоит число на 3 больше, чем в $C$. Каково наибольшее возможное количество хороших клеток?
В пространстве расположили конечный набор кругов радиуса $1$. Круги могут пересекаться друг с другом, но не проходят через центры друг друга. В центре каждого круга зажгли точечную лампочку, светящую во все стороны. Могло ли случиться, что любой луч света, выходящий из центра любого круга, упирается в какой-то другой круг?
Петя загадал положительную несократимую дробь $x = \frac{m}{n}$. Можно назвать положительную дробь $y$, меньшую 1, и Петя назовёт числитель несократимой дроби, равной сумме $x+y$. Как за два таких действия гарантированно узнать $x$?
В математическом кружке 45 школьников, некоторые дружат. Как ни разбивай их на тройки, в какой-то тройке все будут друг с другом дружить. Докажите, что всех школьников можно разбить на тройки так, чтобы в каждой тройке хотя бы какие-то двое дружили друг с другом.
Есть $N$ удавов, их пасти имеют размеры 1 см, 2 см, ..., $N$ см. Каждый удав может заглотить яблоко любого диаметра (в см), не превосходящего размер его пасти. Но по внешнему виду нельзя определить, какая у кого пасть. Вечером смотритель может выдать каждому удаву сколько хочет яблок каких хочет размеров, и за ночь удав заглотит все те из них, что влезают ему в пасть. Какое минимальное количество яблок суммарно смотритель должен вечером выдать удавам, чтобы утром по результату он гарантированно определил размер пасти каждого удава?
Таблица 2×2024 заполнена целыми числами, причём в первой строке стоят числа из набора {1, ..., 2023}. Оказалось, что какие бы два столбца мы ни выбрали, разность их чисел из первой строки делится на разность их чисел из второй строки. Известно, что все числа во второй строке попарно различны. Обязательно ли тогда все числа в первой строке равны между собой?
Хорда $DE$ описанной около треугольника $ABC$ окружности пересекает стороны $AB$ и $BC$ в точках $P$ и $Q$ соответственно, точка $P$ лежит между $D$ и $Q$. В треугольниках $ADP$ и $QEC$ провели биссектрисы $DF$ и $EG$. Оказалось, что точки $D$, $F$, $G$, $E$ лежат на одной окружности. Докажите, что точки $A$, $P$, $Q$, $C$ лежат на одной окружности.
Дан выпуклый четырехугольник $ABCD$ площади $S$. Внутри каждой его стороны отмечено по точке и эти точки последовательно соединены отрезками, так что $ABCD$ разбивается на меньший четырехугольник и $4$ треугольника. Докажите, что хотя бы у одного из этих треугольников площадь не превосходит $\frac{S}{8}$.
Квадрат разбили на несколько прямоугольников так, что центры прямоугольников образуют выпуклый многоугольник. а) Обязательно ли каждый прямоугольник примыкает к стороне квадрата? б) Может ли количество прямоугольников равняться 23?
Для какого наибольшего $N$ существует $N$-значное число со свойством: в его десятичной записи среди любых нескольких подряд идущих цифр какая-то цифра встречается ровно один раз?
На белых клетках шахматной доски 100×100 стоят 100 слонов, среди которых есть белые и чёрные. Они могут делать ходы в любом порядке и бить слонов противоположного цвета. Какого наименьшего числа ходов заведомо достаточно, чтобы на доске остался один слон?
Пекарь испёк прямоугольный лаваш и разрезал его на $n^2$ прямоугольников, сделав $n–1$ горизонтальных разрезов и $n–1$ вертикальных. Оказалось, что округлённые до целого числа площади получившихся прямоугольников равны всем натуральным числам от $1$ до $n^2$ в некотором порядке. Для какого наибольшего $n$ это могло произойти? (Полуцелые числа округляются вверх.)
У Васи есть 13 одинаковых на вид гирь, но 12 из них весят одинаково, а одна фальшивая – весит больше остальных. Также у него есть двое чашечных весов – одни правильные, а другие показывают верный результат (какая чаша тяжелее), если массы на чашах различаются, а в случае равенства могут показать что угодно (какие именно весы правильные, Вася не знает). Перед каждым взвешиванием Вася может сам выбирать весы. Докажите, что Вася может гарантированно найти фальшивую гирю за 3 взвешивания.
Дан треугольник $ABC$ с углом $A$, равным $60^\circ$. Его вписанная окружность касается стороны $AB$ в точке $D$, а вневписанная окружность, касающаяся стороны $AC$, касается продолжения стороны $AB$ в точке $E$. Докажите, что перпендикуляр к стороне $AC$, проходящий через точку $D$, вторично пересекает вписанную окружность в точке, равноудаленной от точек $E$ и $C$. (Вневписанной называется окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон.)
Назовём двуклетчатую карточку $2\times 1$<i>правильной</i>, если в ней записаны два натуральных числа, причём число в верхней клетке меньше числа в нижней клетке. За ход разрешается изменить оба числа на карточке: либо прибавить к каждому одно и то же целое число (возможно, отрицательное), либо умножить каждое на одно и то же натуральное число, либо разделить каждое на одно и то же натуральное число; при этом карточка должна остаться правильной. За какое наименьшее количество таких ходов из любой правильной карточки можно получить любую другую правильную карточку?
В квадратном листе бумаги площади $1$ проделали дыру в форме треугольника (вершины дыры не выходят на границу листа). Докажите, что из оставшейся бумаги можно вырезать треугольник площади $\frac16$.
Высоты остроугольного треугольника $ABC$ пересекаются в точке $H$. Пусть $P$ – произвольная точка внутри (и не на сторонах) треугольника $ABC$, лежащая на описанной окружности треугольника $ABH$, и $A', B', C'$ – проекции точки $P$ на прямые $BC, CA, AB$. Докажите, что описанная окружность треугольника $A'B'C'$ проходит через середину отрезка $CP$.