Олимпиадные задачи из источника «46 турнир (2024/2025 год)» для 8 класса - сложность 4-5 с решениями
46 турнир (2024/2025 год)
НазадДано натуральное число $n$. Натуральное число $m$ назовём<i>удачным</i>, если найдутся $m$ последовательных натуральных чисел, сумма которых равна сумме $n$ следующих за ними натуральных чисел. Докажите, что количество удачных чисел нечётно.
Даны две строго возрастающие последовательности положительных чисел, в которых каждый член, начиная с третьего, равен сумме двух предыдущих. Известно, что каждая последовательность содержит хотя бы одно число, которого нет в другой последовательности. Какое наибольшее количество общих чисел может быть у этих последовательностей? <b>Замечание к условию.</b>Предполагается, что обе последовательности бесконечны, иначе совпадений, очевидно, может быть сколько угодно (можно взять первые $n$ членов последовательности Фибоначчи 1, 2, 3, 5, 8, 13, ... как первую последовательность, и члены со второго по $(n+1)$-й — как вторую).