Олимпиадные задачи из источника «весенний тур, 9-10 класс» для 3-9 класса - сложность 3-5 с решениями
весенний тур, 9-10 класс
НазадВ параллелограмме <i>ABCD</i>, не являющемся ромбом, проведена биссектриса угла <i>BAD</i>. <i>K</i> и <i>L</i> – точки её пересечения с прямыми <i>BC</i> и <i>CD</i> соответственно. Докажите, что центр окружности, проведённой через точки <i>C</i>, <i>K</i> и <i>L</i>, лежит на окружности, проведённой через точки <i>B</i>, <i>C</i> и <i>D</i>.
30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
а) четырёх вечеров недостаточно,
б) пяти вечеров также недостаточно,
в) а десяти вечеров достаточно,
г) и даже семи вечеров тоже достаточно.
Дана невозрастающая последовательность неотрицательных чисел <i>a</i><sub>1</sub> ≥ <i>a</i><sub>2</sub> ≥ <i>a</i><sub>3</sub> ≥ ... ≥ <i>a</i><sub>2<i>k</i>+1</sub> ≥ 0.
Докажите неравенство: <img align="absmiddle" src="/storage/problem-media/97905/problem_97905_img_2.gif">