Олимпиадные задачи из источника «7 турнир (1985/1986 год)» для 3-8 класса - сложность 2 с решениями
7 турнир (1985/1986 год)
НазадУчитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание: Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения <i>A, B</i> и <i>C</i> лежали внутри большой окружности. Измерьте площадь <i>S</i> треугольника <i>ABC</i> и площади <i>S<sub>A</sub></i>, <i>S<sub>B</sub></i> и <i>S<sub>C</sub></i> трёх образовавшихся криволинейных треугольников с вершинами в точках <i>A, B</i> и <i>C</i>. Найдите <i>S<sub>A</sub> + S<sub>B</sub> + S<sub>C</sub> – S</i>. Докажите, что у всех ученик...
При каком натуральном <i>K</i> величина <img align="absmiddle" src="/storage/problem-media/97900/problem_97900_img_2.gif"> достигает максимального значения?
20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.
Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В? <div align="center"><img src="/storage/problem-media/97880/problem_97880_img_2.gif"></div>