Олимпиадные задачи из источника «8 турнир (1986/1987 год)» для 11 класса
Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета?
На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.
В футбольном турнире в один круг участвовало 28 команд. По окончании турнира оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.
В пространстве даны параллелограмм <i>ABCD</i> и плоскость <i>M</i>. Расстояния от точек <i>A</i>, <i>B</i> и <i>C</i> до плоскости <i>M</i> равны соответственно <i>a</i>, <i>b</i> и <i>c</i>.
Найти расстояние <i>d</i> от вершины <i>D</i> до плоскости <i>M</i>.