Олимпиадные задачи из источника «1997-1998» для 7 класса - сложность 3 с решениями
1997-1998
НазадУ нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.
На концах клетчатой полоски размером1×101клеток стоят две фишки: слева – фишка первого игрока, справа – второго. За ход разрешается сдвинуть свою фишку в направлении противоположного края полоски на 1, 2, 3 или 4 клетки. При этом разрешается перепрыгивать через фишку соперника, но запрещается ставить свою фишку на одну клетку с ней. Выигрывает тот, кто первым достигнет противоположного края полоски. Кто выиграет при правильной игре: тот, кто ходит первым, или его соперник?
На доске записано целое число. Его последняя цифра запоминается, затем стирается и, умноженная на 5, прибавляется к тому числу, что осталось на доске после стирания. Первоначально было записано число 7<sup>1998</sup>. Может ли после применения нескольких таких операций получиться число 1998<sup>7</sup>?
На доске написаны два различных натуральных числа <i>a</i> и <i>b</i>. Меньшее из них стирают, и вместо него пишут число <img align="absmiddle" src="/storage/problem-media/109683/problem_109683_img_2.gif"> (которое может уже оказаться нецелым). С полученной парой чисел делают ту же операцию и т.д. Докажите, что в некоторый момент на доске окажутся два равных натуральных числа.
В треугольнике <i>ABC</i> (<i>AB > BC</i>) проведены медиана <i>BM</i> и биссектриса <i>BL</i>. Прямая, проходящая через точку <i>M</i> параллельно <i>AB</i>, пересекает <i>BL</i> в точке <i>D</i>, а прямая, проходящая через <i>L</i> параллельно <i>BC</i>, пересекает <i>BM</i> в точке <i>E</i>. Докажите, что прямые <i>ED</i> и <i>BL</i> перпендикулярны.
На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём <i>временем перевода</i>. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?
Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника, принадлежащую только одному параллелограмму, назовем хорошей. Докажите, что хороших вершин не менее трех.
На множестве действительных чисел задана операция<i> * </i>, которая каждым двум числам<i> a </i>и<i> b </i>ставит в соответствие число<i> ab </i>. Известно, что равенство(<i>ab</i>)<i>c=a+b+c </i>выполняется для любых трех чисел<i> a </i>,<i> b </i>и<i> c </i>. Докажите, что<i> ab=a+b </i>.