Олимпиадные задачи из источника «Заключительный этап» для 8-9 класса - сложность 4 с решениями

Найдите все такие нечётные натуральные  <i>n</i> > 1,  что для любых взаимно простых делителей <i>a</i> и <i>b</i> числа <i>n</i> число  <i>a + b</i> – 1  также является делителем <i>n</i>.

Два многочлена  <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i>  и  <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>px + q</i>  принимают отрицательные значения на некотором интервале <i>I</i> длины более 2, а вне <i>I</i> – неотрицательны. Докажите, что найдётся такая точка <i>x</i><sub>0</sub>, что  <i>P</i>(<i>x</i><sub>0</sub>) < <i>Q</i>(<i>x</i><sub>0</sub>).

Найдите все такие натуральные числа <i>n</i>, что для любых двух его взаимно простых делителей <i>a</i> и <i>b</i> число  <i>a + b</i> – 1  также является делителем <i>n</i>.

В стране несколько городов, некоторые пары городов соединены дорогами, причём между каждыми двумя городами существует единственный несамопересекающийся путь по дорогам. Известно, что в стране ровно 100 городов, из которых выходит по одной дороге. Докажите, что можно построить 50 новых дорог так, что после этого даже при закрытии любой дороги можно будет из каждого города попасть в любой другой.

В стране 2001 город, некоторые пары городов соединены дорогами, причём из каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов <i>D доминирующим</i>, если каждый не входящий в <i>D</i> город соединён дорогой с одним из городов множества <i>D</i>. Известно, что в каждом доминирующем множестве хотя бы <i>k</i> городов. Докажите, что страну можно разбить на  2001 – <i>k</i>  республик так, что никакие два города из одной республики не будут соединены дорогой.

Участникам тестовой олимпиады было предложено <i>n</i> вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

  Пусть 2<i>S</i> – суммарный вес некоторого набора гирек. Назовём натуральное число <i>k средним</i>, если в наборе можно выбрать <i>k</i> гирек, суммарный вес которых равен <i>S</i>. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?

На высотах (но не на их продолжениях) остроугольного треугольника<i> ABC </i>взяты точки<i> A</i>1,<i> B</i>1,<i> C</i>1, отличные от точки пересечения высот<i> H </i>, причём сумма площадей треугольников<i> ABC</i>1,<i> BCA</i>1,<i> CAB</i>1равна площади треугольника<i> ABC </i>. Докажите, что окружность, описанная около треугольника<i> A</i>1<i>B</i>1<i>C</i>1, проходит через точку<i> H </i>.

Даны две окружности, касающиеся внутренним образом в точке<i> N </i>. Касательная к внутренней окружности, проведённая в точке<i> K </i>, пересекает внешнюю окружность в точках<i> A </i>и<i> B </i>. Пусть<i> M </i>– середина дуги<i> AB </i>, не содержащей точку<i> N </i>. Докажите, что радиус окружности, описанной около треугольника<i> BMK </i>, не зависит от выбора точки<i> K </i>на внутренней окружности.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка