Олимпиадные задачи из источника «Региональный этап» для 2-8 класса - сложность 4-5 с решениями
Мишень "бегущий кабан" находится в одном из<i> n </i>окошек, расположенных в ряд. Окошки закрыты занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?
Даны натуральные числа<i> p<k<n </i>. На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (<i>k+</i>1)×<i>n </i>(<i> n </i>клеток по горизонтали,<i> k+</i>1– по вертикали) отмечено ровно<i> p </i>клеток. Докажите, что существует прямоугольник<i> k</i>×(<i>n+</i>1) (где<i> n+</i>1клетка по горизонтали,<i> k </i>– по вертикали), в котором отмечено не менее<i> p+</i>1клетки.