Олимпиадные задачи из источника «2003-2004»

В некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно было добраться до любого другого. Министр транспорта и министр внутренних дел по очереди вводят на дорогах, пока есть возможность, одностороннее движение (на одной дороге за ход), причём министр, после хода которого из какого-либо города стало невозможно добраться до какого-либо другого, немедленно уходит в отставку. Первым ходит министр транспорта.

Может ли кто-либо из министров добиться отставки другого независимо от его игры?

Можно ли во всех точках плоскости с целыми координатами записать натуральные числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?

Набор пятизначных чисел ${N_1, \dots, N_k}$ таков, что любое пятизначное число, все цифры которого идут в возрастающем порядке, совпадает хотя бы в одном разряде хотя бы с одним из чисел $N_1, \dots, N_k$. Найдите наименьшее возможное значение $k$.

Может ли в наборе из шести чисел  (<i>a, b, c</i>, <sup><i>a</i>²</sup>/<sub><i>b</i></sub>, <sup><i>b</i>²</sup>/<sub><i>c</i></sub>, <sup><i>c</i>²</sup>/<sub><i>a</i></sub>},  где <i>a, b, c</i> – положительные числа, оказаться ровно три различных числа?

В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?

В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.

Имеется набор гирь со следующими свойствами:<ol type="a"> <li>В нем есть 5 гирь, попарно различных по весу.

</li><li>Для любых двух гирь найдутся две другие гири того же суммарного веса. </li></ol>Какое наименьшее число гирь может быть в этом наборе?

По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?

Мишень "бегущий кабан" находится в одном из<i> n </i>окошек, расположенных в ряд. Окошки закрыты занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?

Положительные числа <i>x, y, z</i> таковы, что модуль разности любых двух из них меньше 2.

Докажите, что &nbsp<img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_2.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_3.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_4.gif"> > <i>x + y + z</i>.

В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.

Докажите, что эти три числа имеют общий делитель, больший единицы.

Даны натуральные числа<i> p<k<n </i>. На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (<i>k+</i>1)×<i>n </i>(<i> n </i>клеток по горизонтали,<i> k+</i>1– по вертикали) отмечено ровно<i> p </i>клеток. Докажите, что существует прямоугольник<i> k</i>×(<i>n+</i>1) (где<i> n+</i>1клетка по горизонтали,<i> k </i>– по вертикали), в котором отмечено не менее<i> p+</i>1клетки.

Окружности<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>пересекаются в точках<i> A </i>и<i> B </i>. В точке<i> A </i>к<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>проведены соответственно касательные<i> l<sub>1</sub> </i>и<i> l<sub>2</sub> </i>. Точки<i> T<sub>1</sub> </i>и<i> T<sub>2</sub> </i>выбраны соответственно на окружностях<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>так, что угловые меры дуг<i> T<sub>1</sub>A </i>и<i> AT<sub>2</sub> </i>равны (величина дуги...

Набор пятизначных чисел<i> {N<sub>1</sub> </i>,<i> N<sub>k</sub>} </i>таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел<i> N<sub>1</sub> </i>,<i> N<sub>k</sub> </i>. Найдите наименьшее возможное значение<i> k </i>.

Уравнение  <i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i> = 0  с целыми ненулевыми коэффициентами имеет <i>n</i> различных целых корней.

Докажите, что если каждые два корня взаимно просты, то и числа <i>a</i><sub><i>n</i>–1</sub> и <i>a<sub>n</sub></i> взаимно просты.

На плоскости отмечено<i> N<img src="/storage/problem-media/110154/problem_110154_img_2.gif"> </i>3различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более<i> n </i>различных расстояний. Докажите, что<i> N<img src="/storage/problem-media/110154/problem_110154_img_3.gif"> </i>(<i>n+</i>1)<i><sup>2</sup> </i>.

Сумма положительных чисел <i>a, b, c</i> равна <sup>π</sup>/<sub>2</sub>. Докажите, что  cos <i>a</i> + cos <i>b</i> + cos <i>c</i> > sin <i>a</i> + sin <i>b</i> + sin <i>c</i>.

Дана треугольная пирамида<i> ABCD </i>. Сфера<i> S<sub>1</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> C </i>, пересекает ребра<i> AD </i>,<i> BD </i>,<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>соответственно; сфера<i> S<sub>2</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> D </i>, пересекает ребра<i> AC </i>,<i> BC </i>,<i> DC </i>в точках<i> P </i>,<i> Q </i>,<i> M </i>соответственно. Оказалось, что<i> KL|| PQ </i>. Докажите, что биссектрисы плоских углов<i> KMQ &lt...

При каких натуральных<i> n </i>для любых чисел<i> α </i>,<i> β </i>,<i> γ </i>, являющихся величинами углов остроугольного треугольника, справедливо неравенство <center><i>

sin nα + sin nβ + sin nγ<</i>0<i>? </i></center>

Расстоянием между числами  <span style="text-decoration: overline;"><i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub><i>a</i><sub>4</sub><i>a</i><sub>5</sub></span>  и  <span style="text-decoration: overline;"><i>b</i><sub>1</sub><i>b</i><sub>2</sub><i>b</i><sub>3</sub><i>b</i><sub>4</sub><i>b</i><sub>5</sub></span>  назовём максимальное <i>i</i>, для которого  <i>a<sub>i</sub></i> ≠ <i>b<sub>i</sub></i>.  Все пятизначные числа выписаны друг...

Пусть многочлен  <i>P</i>(<i>x</i>) = <i>a<sub>n</sub>x<sup>n</sup> + a</i><sub><i>n</i>–1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub>0</sub>  имеет хотя бы один действительный корень и  <i>a</i><sub>0</sub> ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи <i>P</i>(<i>x</i>), можно получить из него число <i>a</i><sub>0</sub> так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

В языке жителей Банановой Республики количество слов превышает количество букв в их алфавите. Докажите, что найдется такое натуральное<i> k </i>, для которого можно выбрать<i> k </i>различных слов, в записи которых используется ровно<i> k </i>различных букв.

Пусть <i>O</i> – центр описанной окружности остроугольного треугольника <i>ABC, T</i> – центр описанной окружности треугольника <i>AOC, M</i> – середина <i>AC</i>. На сторонах <i>AB</i> и <i>BC</i> выбраны точки <i>D</i> и <i>E</i> соответственно так, что  ∠<i>BDM</i> = ∠<i>BEM</i> = ∠<i>B</i>.  Докажите, что  <i>BT</i> ⊥ <i>DE</i>.

Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется <i>хорошей</i>, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка