Олимпиадные задачи из источника «Региональный этап» для 11 класса - сложность 3-4 с решениями
Докажите, что для каждого<i> x </i>такого, что<i> sin x<img src="/storage/problem-media/110210/problem_110210_img_2.gif"> </i>0, найдется такое натуральное<i> n </i>, что<i> | sin nx| <img src="/storage/problem-media/110210/problem_110210_img_3.gif"> <img src="/storage/problem-media/110210/problem_110210_img_4.gif"> </i>.
В тетраэдре<i> ABCD </i>из вершины<i> A </i>опустили перпендикуляры<i> AB' </i>,<i> AC' </i>,<i> AD' </i>на плоскости, делящие двугранные углы при ребрах<i> CD </i>,<i> BD </i>,<i> BC </i>пополам. Докажите, что плоскость(<i>B'C'D'</i>)параллельна плоскости(<i>BCD</i>).
В гоночном турнире 12 этапов и <i>n</i> участников. После каждого этапа все участники в зависимости от занятого места <i>k</i> получают баллы <i>a<sub>k</sub></i> (числа <i>a<sub>k</sub></i> натуральны, и <i>a</i><sub>1</sub> > <i>a</i><sub>2</sub> > ... > <i>a<sub>n</sub></i>). При каком наименьшем <i>n</i> устроитель турнира может выбрать числа <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
Произведение квадратных трёхчленов <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, ..., <i>x</i>² + <i>a<sub>n</sub>x + b<sub>n</sub></i> равно многочлену <i>P</i>(<i>x</i>) = <i>x</i><sup>2<i>n</i></sup> + <i>c</i><sub>1</sub><i>x</i><sup>2<i>n</i>–1</sup> + <i>c</i><sub>2</sub><i>x</i><sup>2<i>n</i>–2</sup> + ... + <i>c</i><sub>2<i>n</i>–1</...