Олимпиадные задачи из источника «Региональный этап» для 11 класса - сложность 3-5 с решениями

У выпуклого многогранника2<i>n </i>граней (<i> n<img src="/storage/problem-media/110213/problem_110213_img_2.gif"> </i>3), и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?

Докажите, что для каждого<i> x </i>такого, что<i> sin x<img src="/storage/problem-media/110210/problem_110210_img_2.gif"> </i>0, найдется такое натуральное<i> n </i>, что<i> | sin nx| <img src="/storage/problem-media/110210/problem_110210_img_3.gif"> <img src="/storage/problem-media/110210/problem_110210_img_4.gif"> </i>.

В тетраэдре<i> ABCD </i>из вершины<i> A </i>опустили перпендикуляры<i> AB' </i>,<i> AC' </i>,<i> AD' </i>на плоскости, делящие двугранные углы при ребрах<i> CD </i>,<i> BD </i>,<i> BC </i>пополам. Докажите, что плоскость(<i>B'C'D'</i>)параллельна плоскости(<i>BCD</i>).

В гоночном турнире 12 этапов и <i>n</i> участников. После каждого этапа все участники в зависимости от занятого места <i>k</i> получают баллы <i>a<sub>k</sub></i> (числа <i>a<sub>k</sub></i> натуральны, и  <i>a</i><sub>1</sub> > <i>a</i><sub>2</sub> > ... > <i>a<sub>n</sub></i>).  При каком наименьшем <i>n</i> устроитель турнира может выбрать числа <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.

Произведение квадратных трёхчленов  <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>,  <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>,  ...,  <i>x</i>² + <i>a<sub>n</sub>x + b<sub>n</sub></i>  равно многочлену  <i>P</i>(<i>x</i>) = <i>x</i><sup>2<i>n</i></sup> + <i>c</i><sub>1</sub><i>x</i><sup>2<i>n</i>–1</sup> + <i>c</i><sub>2</sub><i>x</i><sup>2<i>n</i>–2</sup> + ... + <i>c</i><sub>2<i>n</i>–1</...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка