Олимпиадные задачи из источника «Заключительный этап» для 6-8 класса - сложность 3-5 с решениями
В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?
Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?
В клетках таблицы 10×10 произвольно расставлены натуральные числа от 1 до 100, каждое по одному разу. За один ход разрешается поменять местами любые два числа. Докажите, что за 35 ходов можно добиться того, чтобы сумма каждых двух чисел, стоящих в клетках с общей стороной, была составной.
В каждой вершине выпуклого 100-угольника написано по два различных числа. Докажите, что можно вычеркнуть по одному числу в каждой вершине так, чтобы оставшиеся числа в каждых двух соседних вершинах были различными.
В треугольнике <i>ABC</i> проведена биссектриса <i>BB</i><sub>1</sub>. Перпендикуляр, опущенный из точки <i>B</i><sub>1</sub> на <i>BC</i>, пересекает дугу <i>BC</i> описанной окружности треугольника <i>ABC</i> в точке <i>K</i>. Перпендикуляр опущенный из точки <i>B</i> на <i>AK</i> пересекает <i>AC</i> в точке <i>L</i>. Докажите что точки <i>K, L</i> и середина дуги <i>AC</i> (не содержащей точку <i>B</i>) лежат на одной прямой.
Два игрока по очереди проводят диагонали в правильном (2<i>n+</i>1)-угольнике (<i>n</i> > 1). Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?
На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.
Приведённые квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что уравнения <i>f</i>(<i>g</i>(<i>x</i>)) = 0 и <i>g</i>(<i>f</i>(<i>x</i>)) = 0 не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений <i>f</i>(<i>f</i>(<i>x</i>)) = 0 и <i>g</i>(<i>g</i>(<i>x</i>)) = 0 тоже не имеет вещественных корней.
Грани куба 9×9×9 разбиты на единичные клетки. Куб оклеен без наложений бумажными полосками 2×1 (стороны полосок идут по сторонам клеток). Докажите, что число согнутых полосок нечётно.