Олимпиадные задачи из источника «Региональный этап» для 11 класса - сложность 1-3 с решениями
Даны положительные рациональные числа <i>a, b</i>. Один из корней трёхчлена <i>x</i>² – <i>ax + b</i> – рациональное число, в несократимой записи имеющее вид <sup><i>m</i></sup>/<sub><i>n</i></sub>. Докажите, что знаменатель хотя бы одного из чисел <i>a</i> и <i>b</i> (в несократимой записи) не меньше <i>n</i><sup>2/3</sup>.
На острове живут100рыцарей и100лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно100человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.
Последовательность(<i>a<sub>n</sub></i>)задана условиями<i> a<sub>1</sub>= </i>1000000,<i> a<sub>n+</sub></i>1<i>=n</i>[<i><img align="absmiddle" src="/storage/problem-media/111805/problem_111805_img_2.gif"></i>]<i>+n </i>. Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
Числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> таковы, что <i>x</i><sub>1</sub> ≥ <i>x</i><sub>2</sub> ≥ ... ≥ <i>x<sub>n</sub></i> ≥ 0 и <img align="absmiddle" src="/storage/problem-media/111800/problem_111800_img_2.gif"> Докажите, что <img align="absmiddle" src="/storage/problem-media/111800/problem_111800_img_3.gif">
На диагонали <i>BD</i> вписанного четырёхугольника <i>ABCD</i> выбрана такая точка <i>K</i>, что ∠<i>AKB</i> = ∠<i>ADC</i>. Пусть <i>I</i> и <i>I'</i> – центры вписанных окружностей треугольников <i>ACD</i> и <i>ABK</i> соответственно. Отрезки <i>II'</i> и <i>BD</i> пересекаются в точке <i>X</i>. Докажите, что точки <i>A, X, I, D</i> лежат на одной окружности.
По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при <i>x</i>², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при <i>x</i>, то получатся трёхчлены, имеющие корни.