Олимпиадные задачи из источника «Заключительный этап» для 11 класса - сложность 2-4 с решениями
В НИИЧАВО работают несколько научных сотрудников. В течение 8-часового рабочего дня сотрудники ходили в буфет, возможно по нескольку раз. Известно, что для каждых двух сотрудников суммарное время, в течение которого в буфете находился ровно один из них, оказалось не менее <i>x</i> часов (<i>x</i> > 4). Какое наибольшее количество научных сотрудников могло работать в этот день в НИИЧАВО (в зависимости от <i>x</i>)?
Числа <i>a, b, c</i> таковы, что уравнение <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> = 0 имеет три действительных корня. Докажите, что если –2 ≤ <i>a + b + c</i> ≤ 0, то хотя бы один из этих корней принадлежит отрезку [0, 2].
При каких натуральных <i>n</i> > 1 существуют такие натуральные <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> (не все из которых равны), что при всех натуральных <i>k</i> число
(<i>b</i><sub>1</sub> + <i>k</i>)(<i>b</i><sub>2</sub> + <i>k</i>)...(<i>b<sub>n</sub> + k</i>) является степенью натурального числа? (Показатель степени может зависеть от <i>k</i>, но должен быть больше 1.)
В блицтурнире принимали участие 2<i>n</i> + 3 шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее <i>n</i> игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.
Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел <i>a, b</i>, стоящих в соседних по стороне клетках, хотя бы одно из уравнений <i>x</i>² – <i>ax + b</i> = 0 и <i>x</i>² – <i>bx + a</i> = 0 имеет два целых корня?
Дано конечное множество простых чисел <i>P</i>. Докажите, что найдётся такое натуральное число <i>x</i> , что оно представляется в виде <i>x = a<sup>p</sup> + b<sup>p</sup></i> (с натуральными <i>a, b</i>) при всех <i>p</i> ∈ <i>P </i> и не представляется в таком виде для любого простого <i>p</i> ∉ <i>P</i>.
Пете и Васе подарили одинаковые наборы из <i>N</i> гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение <i>N</i>.