Олимпиадные задачи из источника «Региональный этап» для 10 класса - сложность 2 с решениями

Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.

В неравнобедренном остроугольном треугольнике <i>ABC</i> точки <i>C</i><sub>0</sub> и <i>B</i><sub>0</sub> – середины сторон <i>AB</i> и <i>AC</i> соответственно, <i>O</i> – центр описанной окружности, <i>H</i> – точка пересечения высот. Прямые <i>BH</i> и <i>OC</i><sub>0</sub> пересекаются в точке <i>P</i>, а прямые <i>CH</i> и <i>OB</i><sub>0</sub> – в точке <i>Q</i>. Оказалось, что четырёхугольник <i>OPHQ</i> – ромб. Докажите, что точки <i>A, P</i> и <i>Q</i> лежат на одной прямой.

Найдите все такие числа <i>a</i>, что для любого натурального <i>n</i> число  <i>an</i>(<i>n</i> + 2)(<i>n</i> + 3)(<i>n</i> + 4)  будет целым.

Даны различные натуральные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>14</sub>.  На доску выписаны все 196 чисел вида  <i>a<sub>k</sub></i> + <i>a<sub>l</sub></i>,  где  1 ≤ <i>k</i>, <i>l</i> ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

На стороне <i>AC</i> остроугольного треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>K</i> так, что ∠<i>ABM</i> = ∠<i>CBK</i>.

Докажите, что центры описанных окружностей треугольников <i>ABM, ABK, CBM</i> и <i>CBK</i> лежат на одной окружности.

Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка