Олимпиадные задачи из источника «Региональный этап» для 11 класса - сложность 3-4 с решениями
Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).
Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?
Остроугольный треугольник <i>ABC</i> вписан в окружность ω. Касательные к ω, проведённые через точки <i>B</i> и <i>C</i>, пересекают касательную к ω, проведённую через точку <i>A</i>, в точках <i>K</i> и <i>L</i> соответственно. Прямая, проведённая через <i>K</i> параллельно <i>AB</i>, пересекается с прямой, проведённой через <i>L</i> параллельно <i>AC</i>, в точке <i>P</i>. Докажите, что <i>BP = CP</i>.
2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по <i>x</i><sub>1</sub>, ..., <i>x</i><sub>2011</sub> кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по <i>y</i><sub>1</sub>, ..., <i>y</i><sub>2011</sub> кг цемента соответственно, причём
<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>2011</sub> = <i>y</i><sub>1</sub> + <i>y<...
На окружности, описанной около прямоугольника <i>ABCD</i>, выбрана точка <i>K</i>. Оказалось, что прямая <i>CK</i> пересекает отрезок <i>AD</i> в такой точке <i>M</i>, что
<i>AM</i> : <i>MD</i> = 2. Пусть <i>O</i> – центр прямоугольника. Докажите, что точка пересечения медиан треугольника <i>OKD</i> лежит на описанной окружности треугольника <i>COD</i>.