Олимпиадные задачи из источника «Заключительный этап» для 5-10 класса - сложность 3-5 с решениями

Двое игроков играют в карточную игру. У них есть колода из <i>n</i> попарно различных карт. Про любые две карты из колоды известно, какая из них бьёт другую (при этом, если <i>A</i> бьёт <i>B</i>, а <i>B</i> бьёт <i>C</i>, то может оказаться, что <i>C</i> бьёт <i>A</i>). Колода распределена между игроками произвольным образом. На каждом ходу игроки открывают по верхней карте из своих колод, и тот, чья карта бьёт карту другого игрока, берёт обе карты и кладёт их в самый низ своей колоды в произвольном порядке по своему усмотрению. Докажите, что при любой исходной раздаче игроки могут, зная расположение карт, договориться и действовать так, чтобы один из игроков остался без карт.

Исходно на доске написаны многочлены  <i>x</i>³ – 3<i>x</i>² + 5  и  <i>x</i>² – 4<i>x</i>.  Если на доске уже написаны многочлены  <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>), разрешается дописать на неё многочлены  <i>f</i>(<i>x</i>) ± <i>g</i>(<i>x</i>),  <i>f</i>(<i>x</i>)<i>g</i>(<i>x</i>),  <i>f</i>(<i>g</i>(<i>x</i>))  и  <i>cf</i>(<i>x</i>),  где <i>c</i> – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида  <i>x<sup>n</sup></i> – 1  (при...

Сфера ω проходит через вершину <i>S</i> пирамиды <i>SABC</i> и пересекает рёбра <i>SA, SB</i> и <i>SC</i> вторично в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> соответственно. Сфера Ω, описанная около пирамиды <i>SABC</i>, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (<i>ABC</i>). Точки <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub> симметричны точкам <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> относительно...

Положительные рациональные числа <i>a</i> и <i>b</i> записаны в виде десятичных дробей, у каждой из которых минимальный период состоит из 30 цифр. У десятичной записи числа  <i>a – b</i>  длина минимального периода равна 15. При каком наименьшем натуральном <i>k</i> длина минимального периода десятичной записи числа  <i>a + kb</i>  может также оказаться равной 15?

Петя и Вася играют в игру на клетчатой доске <i>n×n</i> (где  <i>n</i> > 1).  Изначально вся доска белая, за исключением угловой клетки – она чёрная, и в ней стоит ладья. Игроки ходят по очереди. Каждым ходом игрок передвигает ладью по горизонтали или вертикали, при этом все клетки, через которые ладья перемещается (включая ту, в которую она попадает), перекрашиваются в чёрный цвет. Ладья не должна передвигаться через чёрные клетки или останавливаться на них. Проигрывает тот, кто не может сделать ход; первым ходит Петя. Кто выиграет при правильной игре?

На плоскости дано <i>n</i> выпуклых попарно пересекающихся <i>k</i>-угольников. Каждый из них можно перевести в любой другой гомотетией с положительным коэффициентом. Докажите, что на плоскости найдётся точка, принадлежащая хотя бы   <img align="absmiddle" src="/storage/problem-media/64776/problem_64776_img_2.gif">   из этих <i>k</i>-угольников.

Точка <i>M</i> – середина стороны <i>AC</i> треугольника <i>ABC</i>. На отрезках <i>AM</i> и <i>CM</i> выбраны точки <i>P</i> и <i>Q</i> соответственно таким образом, что  <i>PQ = <sup>AC</sup></i>/<sub>2</sub>.  Описанная окружность треугольника <i>ABQ</i> второй раз пересекает сторону <i>BC</i> в точке <i>X</i>, а описанная окружность треугольника <i>BCP</i>, второй раз пересекает сторону <i>AB</i> в точке <i>Y</i>. Докажите, что четырёхугольник <i>BXMY</i> – вписанный.

Треугольник <i>ABC</i>  (<i>AB > BC</i>)  вписан в окружность Ω. На сторонах <i>AB</i> и <i>BC</i> выбраны точки <i>M</i> и <i>N</i> соответственно так, что  <i>AM = CN</i>.  Прямые <i>MN</i> и <i>AC</i> пересекаются в точке <i>K</i>. Пусть <i>P</i> – центр вписанной окружности треугольника <i>AMK</i>, а <i>Q</i> – центр вневписанной окружности треугольника <i>CNK</i>, касающейся стороны <i>CN</i>. Докажите, что середина дуги <i>ABC</i> окружности Ω равноудалена от точек <i>P</i> и <i>Q</i>.

В сейфе <i>n</i> ячеек с номерами от 1 до <i>n</i>. В каждой ячейке первоначально лежала карточка с её номером. Вася переложил карточки в некотором порядке так, что в <i>i</i>-й ячейке оказалась карточка с числом <i>a<sub>i</sub></i>. Петя может менять местами любые две карточки с номерами <i>x</i> и <i>y</i>, платя за это  2|<i>x – y</i>|  рублей. Докажите, что Петя сможет вернуть все карточки на исходные места, заплатив не более  |<i>a</i><sub>1</sub> – 1| + |<i>a</i><sub>2</sub> – 2| + ... + |<i>a<sub>n</sub> – n</i>|  рублей.

Дана функция <i>f</i>, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых <i>x</i> и <i>y</i>, таких, что  <i>x > y</i>,  верно неравенство  (<i>f</i>(<i>x</i>))² ≤ <i>f</i>(<i>y</i>).  Докажите, что множество значений функции содержится в промежутке  [0,1].

В государстве <i>n</i> городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на  <i>n</i> – 1  экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)

В республике математиков выбрали число  α > 2  и выпустили монеты достоинствами в 1 рубль, а также в α<i><sup>k</sup></i> рублей при каждом натуральном <i>k</i>. При этом α было выбрано так, что достоинства всех монет, кроме самой мелкой, иррациональны. Могло ли оказаться, что любую сумму в натуральное число рублей можно набрать этими монетами, используя монеты каждого достоинства не более 6 раз?

Трапеция <i>ABCD</i> с основаниями <i>AB</i> и <i>CD</i> вписана в окружность Ω. Окружность ω проходит через точки <i>C, D</i> и пересекает отрезки <i>CA, CB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> соответственно. Точки <i>A</i><sub>2</sub> и <i>B</i><sub>2</sub> симметричны точкам <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub> относительно середин отрезков <i>CA</i> и <i>CB</i> соответственно. Докажите, что точки <i>A, B, A</i><sub>2</sub> и <i>B</i><sub>2</sub> лежат на одной окружности.

Точка <i>M</i> – середина стороны <i>AC</i> остроугольного треугольника <i>ABC</i>, в котором  <i>AB > BC</i>.  Касательные к описанной окружности Ω треугольника <i>ABC</i>, проведённые в точках <i>A</i> и <i>C</i>, пересекаются в точке <i>P</i>. Отрезки <i>BP</i> и <i>AC</i> пересекаются в точке <i>S</i>. Пусть <i>AD</i> – высота треугольника <i>BP</i>. Описанная окружность ω треугольника <i>CSD</i> второй раз пересекает окружность Ω в точке <i>K</i>. Докажите, что  ∠<i>CKM</i> = 90°.

В выпуклом <i>n</i>-угольнике проведено несколько диагоналей. Проведённая диагональ называется <i>хорошей</i>, если она пересекается (по внутренним точкам) ровно с одной из других проведённых диагоналей. Найдите наибольшее возможное количество хороших диагоналей.

Серёжа выбрал два различных натуральных числа <i>a</i> и <i>b</i>. Он записал в тетрадь четыре числа:  <i>a,  a</i> + 2,  <i>b</i> и  <i>b</i> + 2.  Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка