Олимпиадные задачи по математике - сложность 5 с решениями

Рассмотрим 5 точек<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>,<i>E</i>так что<i>A</i><i>B</i><i>C</i><i>D</i>- параллелограмм,<i>B</i><i>C</i><i>E</i><i>D</i>лежат на одной окружности.<i>A</i>∈<i>l</i>, прямая<i>l</i>пересекает внутренность [<i>D</i><i>C</i>] в<i>F</i>и прямую<i>B</i><i>C</i>в<i>G</i>. Пусть<i>E</i><i>F</i>=<i>E</i><i>G</i>=<i>E</i><i>C</i>. Доказать, что<i>l</i>- биссектриса угла<i>D</i><i>A</i><i>B</i>...

Даны числа<i>а</i><sub>1</sub>, ...,<i>а<sub>n</sub></i>. Для 1 ≤<i>i</i>≤<i>n</i>положим

<center>

<i>d<sub>i</sub></i> = MAX { <i>a<sub>j</sub></i> | 1 ≤ <i>j</i> ≤ <i>i</i> } - MIN { <i>a<sub>j</sub></i> | <i>i</i> ≤ <i>j</i> ≤ <i>n</i> }

<i>d</i> = MAX { <i>d<sup>i</sup></i> | 1 ≤ <i>i</i> ≤ <i>n</i> } </center> а) Доказать, что для любых<i>x</i><sub>1</sub>≤<i>x</i><sub>2</sub>≤ ... ≤<i>x</i><sub>n</sub>выполняется неравенство

<center&g...

Даны два правильных тетраэдра с ребрами длины<i> <img src="/storage/problem-media/109940/problem_109940_img_2.gif"> </i>, переводящихся один в другой при центральной симметрии. Пусть<i> ϕ </i>– множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры<i> ϕ </i>.

Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника <i>m×n</i> числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка