Олимпиадные задачи по математике для 4-7 класса - сложность 4 с решениями

Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных  <i>m, n</i> > 100  сумма чисел в любом прямоугольнике <i>m</i>×<i>n</i> клеток делилась на  <i>m + n</i>?

В некоторых клетках доски 2<i>n</i>×2<i>n</i> стоят чёрные и белые фишки. С доски сначала снимаются все чёрные фишки, которые стоят в одной вертикали с какой-то белой, а затем все белые фишки, стоящие в одной горизонтали с какой-нибудь из оставшихся чёрных. Докажите, что либо чёрных, либо белых фишек на доске осталось не более <i>n</i>².

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка