Олимпиадные задачи по математике для 1-9 класса - сложность 3-4 с решениями
Многоугольник можно разрезать на две равные части тремя различными способами. Верно ли, что у него обязательно есть центр или ось симметрии?
Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.) <div align="center"><img align="absmiddle" src="/storage/problem-media/111909/problem_111909_img_2.gif"> </div>
Нарисуйте многоугольник и точку на его границе так, что любая прямая, проходящая через эту точку, делит площадь этого многоугольника пополам.
В невыпуклом шестиугольнике каждый угол равен либо 90, либо 270 градусов. Верно ли, что при некоторых длинах сторон его можно разрезать на два подобных ему и неравных между собой шестиугольника?
Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?
Выпуклая фигура <i>F</i> обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу <i>F</i>. Обязательно ли <i>F</i> – круг?
Пусть <img width="120" height="41" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_2.gif"> = <img width="23" height="47" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_3.gif">, где <img width="23" height="47" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_3.gif"> – несократимая дробь.
Докажите, что неравенство <i>b</i><sub><i>n</i>+1</sub> < <i>b<sub>n</sub></i> выполнено для бесконечного числа натуральных <i>n</i>.
Точка <i>X</i>, лежащая вне непересекающихся окружностей ω<sub>1</sub> и ω<sub>2</sub>, такова, что отрезки касательных, проведённых из <i>X</i> к ω<sub>1</sub> и ω<sub>2</sub>, равны. Докажите, что точка пересечения диагоналей четырёхугольника, образованного точками касания, совпадает с точкой пересечения общих внутренних касательных к ω<sub>1</sub> и ω<sub>2</sub>.
Дан выпуклый четырёхугольник <i>ABCD</i> и точка <i>O</i> внутри него. Известно, что ∠<i>AOB</i> = ∠<i>COD</i> = 120°, <i>AO = OB</i> и <i>CO = OD</i>. Пусть <i>K, L</i> и <i>M</i> – середины отрезков <i>AB, BC</i> и <i>CD</i> соответственно. Докажите, что
а) <i>KL = LM</i>;
б) треугольник <i>KLM</i> – правильный.
В треугольнике <i>ABC</i> сторона <i>AC</i> наименьшая. На сторонах <i>AB</i> и <i>CB</i> взяты точки <i>K</i> и <i>L</i> соответственно, причём <i>KA = AC = CL</i>. Пусть <i>M</i> – точка пересечения <i>AL</i> и <i>KC</i>, а <i>I</i> – центр вписанной в треугольник <i>ABC</i> окружности. Докажите, что прямая <i>MI</i> перпендикулярна прямой <i>AC</i>.
На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?
Диагонали трапеции <i>ABCD</i> пересекаются в точке <i>K</i>. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка <i>K</i> лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки <i>K</i>, равны.
Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...
Назовем <i>тропинкой</i> замкнутую траекторию на плоскости, состоящую из дуг окружностей и проходящую через каждую свою точку ровно один раз. Приведите пример тропинки и такой точки <i>M</i> на ней, что любая прямая, проходящая через <i>M, делит тропинку пополам</i>, то есть сумма длин всех кусков тропинки в одной полуплоскости равна сумме длин всех кусков тропинки в другой полуплоскости.
Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.). <img src="/storage/problem-media/105201/problem_105201_img_2.png"> Покажите как по-другому разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.
Назовём <i>белыми</i> числа вида $\sqrt{a+b\sqrt{2}}$, где $a$ и $b$ — целые, не равные нулю. Аналогично, назовём <i>чёрными</i> числа вида $\sqrt{c+d\sqrt{7}}$, где $c$ и $d$ — целые, не равные нулю. Может ли чёрное число равняться сумме нескольких белых?
Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)
Капитан нашёл Остров Сокровищ, имеющий форму круга. На его берегу растут шесть пальм. Капитан знает, что клад закопан в середине отрезка, соединяющего ортоцентры треугольников <i>ABC</i> и <i>DEF</i>, где <i>A, B, C, D, E, F</i> – эти шесть пальм, но он не знает, какой буквой обозначена каждая пальма. Докажите, что тем не менее он может найти клад с первой же попытки.
Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?
Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.
Назовём<i>полоской</i>клетчатый многоугольник, который можно пройти целиком, начав из какой-то его клетки и далее двигаясь только в двух направлениях — вверх или вправо. Несколько таких одинаковых полосок можно вставить друг в друга, сдвигая на вектор (–1, 1). Докажите, что для любой полоски, состоящей из чётного числа клеток, найдётся такое нечётное $k$, что если объединить $k$ таких же полосок, вставив их последовательно друг в друга, то полученный многоугольник можно будет разделить по линиям сетки на две равные части. (На рисунке приведён пример.)<img width="200" src="/storage/problem-media/67435/problem_67435_img_2.png">
Для каждого из чисел 1, 19, 199, 1999 и т. д. изготовили одну отдельную карточку и записали на ней это число. а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки?
б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки?
Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?
Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник <i>P</i> и такая точка <i>A</i> на его границе, что каждая прямая, проходящая через точку <i>A</i>, делит периметр многоугольника <i>P</i> на два куска равной длины?
В треугольнике <i>ABC</i> на стороне <i>BC</i> отмечена точка <i>K</i>. В треугольники <i>ABK</i> и <i>ACK</i> вписаны окружности, первая касается стороны <i>BC</i> в точке <i>M</i>, вторая – в точке <i>N</i>. Докажите, что <i>BM·CN > KM·KN</i>.