Олимпиадные задачи по математике для 5-7 класса - сложность 2-3 с решениями
Квадрат разрезали на несколько частей. Переложив эти части, из них всех сложили треугольник. Затем к этим частям добавили еще одну фигурку – и оказалось, что и из нового набора фигурок можно сложить как квадрат, так и треугольник. Покажите, как такое могло бы произойти (нарисуйте, как именно эти два квадрата и два треугольника могли бы быть составлены из фигурок).
Докажите, что существует многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 2 : 1.
Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.) <div align="center"><img align="absmiddle" src="/storage/problem-media/111909/problem_111909_img_2.gif"> </div>
Петя разрезал фигуру на две равные части, как показано на рисунке. Придумайте, как разрезать эту фигуру на две равные части другим способом.
<center><i> <img src="/storage/problem-media/111637/problem_111637_img_2.gif"> </i></center>
Серёжа вырезал из картона две одинаковые фигуры. Он положил их с нахлёстом на дно прямоугольного ящика. Дно оказалось полностью покрыто. В центр дна вбили гвоздь. Мог ли гвоздь проткнуть одну картонку и не проткнуть другую?
Определите, с какой стороны расположен руль у изображенного на рисунке автомобиля. <center><img src="/storage/problem-media/110758/problem_110758_img_2.gif"></center>
Выпуклая фигура <i>F</i> обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу <i>F</i>. Обязательно ли <i>F</i> – круг?
Назовем <i>тропинкой</i> замкнутую траекторию на плоскости, состоящую из дуг окружностей и проходящую через каждую свою точку ровно один раз. Приведите пример тропинки и такой точки <i>M</i> на ней, что любая прямая, проходящая через <i>M, делит тропинку пополам</i>, то есть сумма длин всех кусков тропинки в одной полуплоскости равна сумме длин всех кусков тропинки в другой полуплоскости.
Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.). <img src="/storage/problem-media/105201/problem_105201_img_2.png"> Покажите как по-другому разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.
Разрежьте изображённую фигуру на две части, из которых можно сложить целый квадрат 8×8.<img src="/storage/problem-media/103799/problem_103799_img_2.gif">