Олимпиадные задачи по математике для 3-11 класса - сложность 4-5 с решениями

Дан выпуклый<i> n </i>-угольник (<i> n></i>3), никакие четыре вершины которого не лежат на одной окружности. Окружность, проходящую через три вершины многоугольника и содержащую внутри себя остальные его вершины, назовем описанной. Описанную окружность назовем граничной, если она проходит через три последовательные (соседние) вершины многоугольника; описанную окружность назовем внутренней, если она проходит через три вершины, никакие две из которых не являются соседними вершинами многоугольника. Докажите, что граничных описанных окружностей на две больше, чем внутренних.

Докажите, что если числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i>  отличны от нуля и для любого целого  <i>k</i> = 0, 1, ..., <i>n</i>  (<i>n < m</i> – 1)  выполняется равенство:

<i>a</i><sub>1</sub> + <i>a</i><sub>2</sub>·2<sup><i>k</i></sup> + <i>a</i><sub>3</sub>·3<sup><i>k</i></sup> + ... + <i>a<sub>m</sub>m<sup>k</sup></i> = 0,  то в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> ...

Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.

На прямой отмечены<i> n </i>различных синих точек и<i> n </i>различных красных точек. Докажите, что сумма попарных расстояний между точками одного цвета не превосходит суммы попарных расстояний между точками разного цвета.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка