Олимпиадные задачи по математике для 11 класса - сложность 1-5 с решениями
Боковая поверхность прямоугольного параллелепипеда с основанием <i>a</i>×<i>b</i> и высотой <i>c</i> (<i>a, b</i> и <i>c</i> – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если <i>c</i> нечётно, то число способов оклейки чётно.
На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:<ol> <li> Снять по одному камню с клеток <i> n-</i>1 и <i> n </i> и положить один камень в клетку <i> n+</i>1; </li> <li> Снять два камня с клетки <i> n </i> и положить по одному камню в клетки <i> n+</i>1, <i> n-</i>2.</li></ol>Докажите, что при любой последовательности действий мы достигнем ситуации, когда указанные действия больше выполнять нельзя, и эта конечная ситуация не зависит от последовательности действий (а зависит только от начальной раскладки камней по клеткам).
Внутри круга расположены точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A<sub>n</sub></i>, а на его границе – точки <i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, ..., <i>B<sub>n</sub></i> так, что отрезки <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>A</i><sub>2</sub><i>B</i><sub>2</sub>, ..., <i>A<sub>n</sub>B<sub>n</sub></i> не пересекаются. Кузнечик может перепрыгнуть из точки <i>A<sub>i</sub></i> в точку <i>A<sub>j</sub></i>, если отрезок <i>A<sub>...
Докажите, что существует такое натуральное число<i> n </i>, что если правильный треугольник со стороной<i> n </i>разбить прямыми, параллельными его сторонам, на<i> n<sup>2</sup> </i>правильных треугольников со стороной 1, то среди вершин этих треугольников можно выбрать1993<i>n </i>точек, никакие три из которых не являются вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного треугольника).
На плоскости нарисован квадрат, стороны которого горизонтальны и вертикальны. В нём проведены несколько отрезков, параллельных сторонам, причём никакие два отрезка не лежат на одной прямой и не пересекаются по точке, внутренней для обоих отрезков. Оказалось, что отрезки разбили квадрат на прямоугольники, причём каждая вертикальная прямая, пересекающая квадрат и не содержащая отрезков разбиения, пересекает ровно <i>k</i> прямоугольников разбиения, а каждая горизонтальная прямая, пересекающая квадрат и не содержащая отрезков разбиения – ровно <i>l</i> прямоугольников. Каким могло оказаться количество прямоугольников разбиения?