Олимпиадные задачи по математике для 6-9 класса - сложность 4 с решениями

В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за одного и того же кандидата из числа оставшихся. На очередных выборах баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре <i>k</i>-е место по числу голосов. Определ...

Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.

Найдите расстановку чисел, при которой полученная сумма наибольшая.

Дано натуральное число $n$. Натуральное число $m$ назовём<i>удачным</i>, если найдутся $m$ последовательных натуральных чисел, сумма которых равна сумме $n$ следующих за ними натуральных чисел. Докажите, что количество удачных чисел нечётно.

Даны две строго возрастающие последовательности положительных чисел, в которых каждый член, начиная с третьего, равен сумме двух предыдущих. Известно, что каждая последовательность содержит хотя бы одно число, которого нет в другой последовательности. Какое наибольшее количество общих чисел может быть у этих последовательностей? <b>Замечание к условию.</b>Предполагается, что обе последовательности бесконечны, иначе совпадений, очевидно, может быть сколько угодно (можно взять первые $n$ членов последовательности Фибоначчи 1, 2, 3, 5, 8, 13, ... как первую последовательность, и члены со второго по $(n+1)$-й — как вторую).

Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?

Назовём пару различных натуральных чисел<i>удачной</i>, если их среднее арифметическое (полусумма) и среднее геометрическое (квадратный корень из произведения) — натуральные числа. Верно ли, что для каждой удачной пары найдётся другая удачная пара с тем же средним арифметическим? (Пояснение: пары $(a,b)$ и $(b,a)$ считаются одинаковыми.)

Выпуклый <i>n</i>-угольник <i>P</i>, где  <i>n</i> > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.

Каковы возможные значения <i>n</i>, если <i>n</i>-угольник описанный?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка