Олимпиадные задачи по математике для 4-7 класса - сложность 2-5 с решениями
В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?
Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?
Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.
Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.