Олимпиадные задачи по математике для 3-9 класса - сложность 4-5 с решениями

Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

Можно ли раскрасить все точки квадрата и круга в чёрный и белый цвета так, чтобы множества белых точек этих фигур были подобны друг другу и множества чёрных точек также были подобны друг другу (возможно, с различными коэффициентами подобия)?

а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.

б) Решите аналогичную задачу для правильного пятиугольника.

в) Для каких правильных <i>n</i>-угольников верно аналогичное утверждение?

Какое наибольшее число точек можно разместить<nobr>a) на</nobr>плоскости;<nobr>б)* в</nobr>пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным? (Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)

В три сосуда налито по целому числу литров воды. В любой сосуд разрешено перелить столько воды, сколько в нём уже содержится, из любого другого сосуда. Докажите, что несколькими такими переливаниями можно освободить один из сосудов. (Сосуды достаточно велики: каждый может вместить всю воду.)

Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка