Олимпиадные задачи по математике для 4-7 класса - сложность 2 с решениями
В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а каждые двое встречались в вылазках ровно по разу.
Докажите, что один из террористов участвовал не менее чем в 11 различных вылазках.
Ищутся такие натуральные числа, оканчивающиеся на 5, что в их десятичной записи цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают.
а) Найдите четыре таких числа.
б) Докажите, что таких чисел бесконечно много.
Рассматривается конечное множество <i>M</i> единичных квадратов на плоскости. Их стороны параллельны осям координат (разрешается, чтобы квадраты пересекались). Известно, что для любой пары квадратов расстояние между их центрами не больше 2. Докажите, что существует единичный квадрат (не обязательно из множества <i>M</i>) со сторонами, параллельными осям, пересекающийся хотя бы по точке с каждым квадратом множества <i>M</i>.
Какое наименьшее количество клеток нужно отметить на шахматной доске, чтобы
1) среди отмеченных клеток не было соседних (имеющих общую сторону или общую вершину),
2) добавление к этим клеткам любой одной клетки нарушало пункт 1?