Олимпиадные задачи по математике для 1-7 класса - сложность 2-3 с решениями

Докажите, что уравнение   <i>x</i>² + <i>y</i>² + <i>z</i>² = <i>x</i>³ + <i>y</i>³ + <i>z</i>³   имеет бесконечное число решений в целых числах <i>x, y, z</i>.

Докажите, что уравнение  <i>xy</i>(<i>x – y</i>) + <i>yz</i>(<i>y – z</i>) + <i>zx</i>(<i>z – x</i>) = 6  имеет бесконечно много решений в целых числах.

Докажите, что уравнение  <i>x</i>² + <i>y</i>² – <i>z</i>² = 1997  имеет бесконечно много решений в целых числах.

Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.

  а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.

  б) Докажите, что большего числа самопересечений такая ломаная не может иметь.

Существует ли бесконечное число таких троек целых чисел <i>x, y, z</i>, что   <i>x</i>² + <i>y</i>² + <i>z</i>² = <i>x</i>³ + <i>y</i>³ + <i>z</i>³?

В каждой клетке квадрата  8×8  клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть

  а) больше 15?

  б) больше 20?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка