Олимпиадные задачи по математике для 8 класса - сложность 3-5 с решениями

Сторону <i>AB</i> треугольника <i>ABC</i> разделили на <i>n</i> равных частей (точки деления  <i>B</i><sub>0</sub> = <i>A,  B</i><sub>1</sub>, <i>B</i><sub>2</sub>,  <i>B<sub>n</sub> = B</i>),  а сторону <i>AC</i> этого треугольника разделили на

<i>n</i> + 1  равных частей (точки деления  <i>C</i><sub>0</sub> = <i>A,  C</i><sub>1</sub>, <i>C</i><sub>2</sub>, ..., <i>C</i><sub><i>n</i>+1</sub> = <i>C</i>).  Закрасили треугольники <i>C<sub>i</sub>B<sub>i</sub>C</i><sub><i&gt...

Есть шоколадка в форме равностороннего треугольника со стороной <i>n</i>, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого <i>n</i> выясните, кто из играющих может всегда выигрывать, как бы не играл противник?

На доске записано целое положительное число <i>N</i>. Два игрока ходят по очереди. За ход разрешается либо заменить число на доске на один из его делителей (отличных от единицы и самого числа), либо уменьшить число на единицу (если при этом число остается положительным). Тот, кто не может сделать ход, проигрывает. При каких <i>N</i> первый игрок может выиграть, как бы ни играл соперник?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка