Олимпиадные задачи по математике для 6-10 класса - сложность 1-2 с решениями
Сравните между собой наименьшие положительные корни многочленов <i>x</i><sup>2011</sup> + 2011<i>x</i> – 1 и <i>x</i><sup>2011</sup> – 2011<i>x</i> + 1.
Последовательность из двух различных чисел продолжили двумя способами: так, чтобы получилась геометрическая прогрессия, и так, чтобы получилась арифметическая прогрессия. При этом третий член геометрической прогрессии совпал с десятым членом арифметической прогрессии. А с каким членом арифметической прогрессии совпал четвёртый член геометрической прогрессии?
Какое наибольшее значение может принимать выражение <img align="absmiddle" src="/storage/problem-media/115510/problem_115510_img_2.gif"> где <i>a, b, c</i> – попарно различные ненулевые цифры?
Найдите наименьшее натуральное число, десятичная запись квадрата которого оканчивается на 2016.