Олимпиадные задачи по математике для 3-9 класса - сложность 3 с решениями
Две окружности пересекаются в точках <i>A</i> и <i>B</i>. Их общая касательная (та, которая ближе к точке <i>B</i>) касается окружностей в точках <i>E</i> и <i>F</i>. Прямая <i>AB</i> пересекает прямую <i>EF</i> в точке <i>M</i>. На продолжении <i>AM</i> за точку <i>M</i> выбрана точка <i>K</i> так, что <i>KM = MA</i>. Прямая <i>KE</i> вторично пересекает окружность, содержащую точку <i>E</i>, в точке <i>C</i>. Прямая <i>KF</i> вторично пересекает окружность, содержащую точку <i>F</i>, в точке <i>D</i>. Докажите, что точки <i>C, D</i> и <i>A</i> лежат...