Олимпиадные задачи по математике для 11 класса - сложность 3-4 с решениями

Дана бесконечная последовательность многочленов <i>P</i><sub>1</sub>(<i>x</i>), <i>P</i><sub>2</sub>(<i>x</i>), ... . Всегда ли существует конечный набор функций  <i>f</i><sub>1</sub>(<i>x</i>),  <i>f</i><sub>2</sub>(<i>x</i>), ...,  <i>f</i><sub><i>N</i></sub>(<i>x</i>), композициями которых можно записать любой из них (например,  <i>P</i><sub>1</sub>(<i>x</i>) =  <i>f</i><sub>2</sub>(<i>f</i><sub>1</sub>(<i>f</i><sub>2</sub>(<i>x</i>))))?

В каждой клетке таблицы $N\times N$ записано число. Назовём клетку $C$<i>хорошей</i>, если в какой-то из клеток, соседних с $C$ по стороне, стоит число на 1 больше, чем в $C$, а в какой-то другой из клеток, соседних с $C$ по стороне, стоит число на 3 больше, чем в $C$. Каково наибольшее возможное количество хороших клеток?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка