Олимпиадные задачи по математике для 10-11 класса - сложность 2 с решениями
В остроугольном треугольнике <i>ABC</i> провели высоты <i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub>, которые пересекаются в точке <i>O</i>. Затем провели высоту <i>A</i><sub>1</sub><i>A</i><sub>2</sub> треугольника <i>OBA</i><sub>1</sub> и высоту <i>B</i><sub>1</sub><i>B</i><sub>2</sub> треугольника <i>OAB</i><sub>1</sub>. Докажите, что отрезок <i>A</i><sub>2</sub><i>B</i><sub>2</sub> параллелен стороне <i>AB</i>.
Внутри окружности расположен прямоугольник $ABCD$. Лучи $BA$ и $DA$ пересекают окружность в точках $A_1$ и $A_2$. Точка $A_0$ – середина хорды $A_1A_2$. Аналогично определяются точки $B_0$, $C_0$, $D_0$. Докажите, чтоотрезки $A_0C_0$ и $B_0D_0$ равны.