Олимпиадные задачи по математике для 5-10 класса - сложность 4-5 с решениями

Пусть <i>M</i> и <i>I</i> – точки пересечения медиан и биссектрис неравнобедренного треугольника <i>ABC</i>, а <i>r</i> – радиус вписанной в него окружности.

Докажите, что  <i>MI</i> = <sup><i>r</i></sup>/<sub>3</sub>  тогда и только тогда, когда прямая <i>MI</i> перпендикулярна одной из сторон треугольника.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка