Олимпиадные задачи по математике для 7-9 класса - сложность 4 с решениями
Пусть <i>M</i> и <i>I</i> – точки пересечения медиан и биссектрис неравнобедренного треугольника <i>ABC</i>, а <i>r</i> – радиус вписанной в него окружности.
Докажите, что <i>MI</i> = <sup><i>r</i></sup>/<sub>3</sub> тогда и только тогда, когда прямая <i>MI</i> перпендикулярна одной из сторон треугольника.