Олимпиадные задачи по математике для 10 класса - сложность 2 с решениями
По кругу лежит $2n + 1$ монета орлом вверх. Двигаясь по часовой стрелке, делают $2n + 1$ переворот: переворачивают какую-то монету, одну монету пропускают и переворачивают следующую, две монеты пропускают и переворачивают следующую, три монеты пропускают и переворачивают следующую, и т.д., наконец пропускают 2n монет и переворачивают следующую. Докажите, что теперь ровно одна монета лежит решкой вверх.