Олимпиадные задачи по математике для 2-8 класса - сложность 3 с решениями

К Ивану на день рождения пришли 2$N$ гостей. У Ивана есть $N$ чёрных и $N$ белых цилиндров. Он хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или несколько) так, чтобы в каждом хороводе было хотя бы два человека и люди в цилиндрах одного цвета не стояли в хороводе рядом. Докажите, что Иван может устроить бал ровно $(2N)!$ различными способами. (Цилиндры одного цвета неразличимы; все гости различимы.)

К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)

Петя подсчитал количество всех возможных <i>m</i>-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2<i>m</i>-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка