Олимпиадные задачи по математике для 3-8 класса - сложность 3-4 с решениями

На сторонах <i>AB</i>, <i>AC</i> треугольника <i>ABC</i> взяли такие точки <i>C</i><sub>1</sub>, <i>B</i><sub>1</sub> соответственно, что  <i>BB</i><sub>1</sub> ⊥ <i>CC</i><sub>1</sub>.  Точка <i>X</i> внутри треугольника такова, что

∠<i>XBC</i> = ∠<i>B</i><sub>1</sub><i>BA</i>,  ∠<i>XCB</i> = ∠<i>C</i><sub>1</sub><i>CA</i>.  Докажите, что  ∠<i>B</i><sub>1</sub><i>XC</i><sub>1</sub> = 90° – ∠<i>A</i>.

Какое наибольшее количество белых и чёрных пешек можно расставить на клетчатой доске 9×9 (пешку, независимо от её цвета, можно ставить на любую клетку доски) так, чтобы никакая из них не била никакую другую (в том числе и своего цвета)? Белая пешка бьёт две соседние по диагонали клетки на соседней горизонтали с бóльшим номером, а чёрная – две соседние по диагонали клетки на соседней горизонтали с меньшим номером (см. рисунок).<div align="center"><img src="/storage/problem-media/65099/problem_65099_img_2.jpg"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка