Олимпиадные задачи по математике

В треугольнике $ABC$ $\angle A=60^{\circ}$; $AD$, $BE$ и $CF$ – биссектрисы; $P$, $Q$ – проекции $A$ на $EF$ и $BC$; $R$ – вторая точка пересечения окружности $DEF$ с прямой $AD$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.

В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности.

В остроугольном треугольнике $ABC$ точка $M$ – середина меньшей дуги $BC$ описанной окружности. Окружность $\omega$ касается сторон $AB$, $AC$ в точках $P$, $Q$ соответственно и проходит через точку $M$. Докажите,что $BP+CQ=PQ$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка