Олимпиадные задачи по математике для 10-11 класса - сложность 4-5 с решениями

В треугольнике $ABC$ $\angle A=60^{\circ}$; $AD$, $BE$ и $CF$ – биссектрисы; $P$, $Q$ – проекции $A$ на $EF$ и $BC$; $R$ – вторая точка пересечения окружности $DEF$ с прямой $AD$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка