Задача
Треугольники ABC и A1B1C1 таковы, что их соответственные углы равны или составляют в сумме 180°.
Докажите, что в действительности все соответственные углы равны.
Решение
В треугольниках ABC и A1B1C1 не может быть двух пар соответственных углов, составляющих в сумме 180°, так как иначе их сумма равна 360° и третьи углы треугольников должны быть нулевыми. Предположим теперь, что углы первого треугольника равны α, β и γ, а углы второго равны 180° – α, β и γ. Сумма углов двух треугольников равна 360°, поэтому 180° + 2β + 2γ = 360°, то есть β + γ = 90°. Следовательно, α = 90° = 180° – α.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет