Назад
Задача

В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).

Решение

Прямая CB и проведённая окружность симметричны относительно высоты AH. Значит, и их общие точки C и N симметричны. Поэтому в треугольнике ACN два угла по 60°, то есть он равносторонний. Аналогично треугольник BCM равносторонний. Следовательно,  AN || BM  (ввиду равенства углов CAN и CMB).

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет