Задача
Рассматриваются всевозможные десятизначные числа, записываемые при помощи двоек и единиц. Разбить их на два класса так, чтобы при сложении любых двух чисел каждого класса получалось число, в написании которого содержится не менее двух троек.
Решение
Отнесём к первому классу все числа, в записи которых встречается чётное число двоек, а ко второму классу – все числа, в записи которых встречается нечётное число двоек. Два числа одного класса либо содержат одинаковое число двоек, либо в одном числе двоек по крайней мере на две больше, чем в другом. Если два числа различны, то на каком-то месте в одном числе стоит 1, а в другом числе стоит 2; если же двоек у этих чисел одинаковое количество, то таких мест по крайней мере два. Если в одном числе двоек по крайней мере на две больше, чем в другом, то по крайней мере двум двойкам в записи первого числа соответствуют единицы в записи второго числа.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь