Олимпиадные задачи по теме «Алгебра и арифметика» для 2-4 класса - сложность 2-4 с решениями

Последовательности положительных чисел (<i>x<sub>n</sub></i>) и (<i>y<sub>n</sub></i>) удовлетворяют условиям   <img align="absmiddle" src="/storage/problem-media/109842/problem_109842_img_2.gif">   при всех натуральных <i>n</i>. Докажите, что если все числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>y</i><sub>1</sub>, <i>y</i><sub>2</sub> больше 1, то  <i>x<sub>n</sub> > y<sub>n</sub></i>  при каком-нибудь натуральном <i>n</i>.

Учительница написала на доске двузначное число и спросила Диму по очереди, делится ли оно на 2? на 3? на 4? … на 9? На все восемь вопросов Дима ответил верно, причём ответов «да» и «нет» было поровну.

а) Можете ли вы теперь ответить верно хотя бы на один из вопросов учительницы, не зная самого числа?

б) А хотя бы на два вопроса?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка