Олимпиадные задачи из источника «параграф 3. Производящие функции» для 8 класса - сложность 3 с решениями

Придумайте какое-либо взаимно-однозначное соответствие между разбиениями натурального числа на различные и на нечётные слагаемые.

На доске написано <i>n</i> натуральных чисел. Пусть <i>a<sub>k</sub></i> – количество тех из них, которые больше <i>k</i>. Исходные числа стерли и вместо них написали все положительные <i>a<sub>k</sub></i>. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел.

Например, для чисел 5, 3, 3, 2, получается следующая цепочка   (5, 3, 3, 2)  →  (4, 4, 3, 1, 1)  →  (5, 3, 3, 2).

Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет <i>счастливым</i>, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть <i>N</i> – количество счастливых билетов. Докажите равенства:

  а)  (1 + <i>x</i> + ... + <i>x</i><sup>9</sup>)<sup>3</sup>(1 + <i>x</i><sup>–1</sup> + ... + <i>x</i><sup>–9</sup>)<sup>3</sup> = <i>x</i><sup>27</sup> + ... + <i>a</i><sub>1</sub><i>x</i> + <i>N</i> + <i>a</i><sub>1</sub><i>x</i> + ... + <i>x</i><sup>–27</sup>;...

Пусть <i>a<sub>n</sub></i> – число решений уравнения  <i>x</i><sub>1</sub> + ... + <i>x<sub>k</sub></i> = <i>n</i>   в целых неотрицательных числах и <i>F</i>(<i>x</i>) – производящая функция последовательности <i>a<sub>n</sub></i>.

  а) Докажите равенства:  <i>F</i>(<i>x</i>) = (1 + <i>x</i> + <i>x</i>² + ...)<sup><i>k</i></sup> = (1 – <i>x</i>)<sup>–<i>k</i></sup>.

  б) Найдите формулу для <i>a<sub>n</sub></i>, пользуясь задачей <a href="https://mirolimp.ru/tasks/161490">161490</a>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка